
Commentary

Learning from the past: how low
[CO2] studies inform plant and
ecosystem response to future
climate change

Atmospheric [CO2] over the past 800 000 yr has varied generally
as a function of glacial periods, with minima (c. 170–200 ppm)
during glacial periods and maxima (c. 280–300 ppm) during
inter-glacial periods (Luthi et al., 2008). During the Last Glacial
Maximum (LGM; 18 000–20 000 yr ago), atmospheric [CO2]
ranged from 180 to 200 ppm, which is approximately half the
current [CO2] (392 ppm), and among the lowest [CO2]
observed during the evolution of vascular land plants over the
past 350 million yr. While it has been observed that low
atmospheric [CO2] directly limits photosynthesis (Tissue &
Lewis, 2010), with subsequent reductions in biomass production
(Lewis et al., 2010), reproduction (Dippery et al., 1995), and
survival (Ward & Kelly, 2004), these studies have primarily been
conducted on modern plants grown for a single generation in low
[CO2] (see review by Gerhart & Ward, 2010). Subsequently,
they do not address the potential evolutionary adaptive responses
to low [CO2] which would only become evident in plants
growing for long-time periods and many generations under these
environmental conditions.

‘… glacial plants were severely carbon limited over a very

long time period, until atmospheric [CO2] began rising

during the glacial–interglacial transition.’

In a fascinating study, in this issue of New Phytologist, Gerhart
et al. (pp. 63–69) compared stable carbon isotope ratios found in
the annual rings of glacial Juniperus wood preserved in the La
Brea tar pits in southern California with modern Juniperus wood
in the nearby mountains, and used them to calculate ci ⁄ ca over
the 50 000-yr period spanning the last glacial period to modern
times. The ci ⁄ ca ratio reflects both the degree of coordination of
CO2 supply (stomatal conductance) and demand (site of carbox-
ylation) functions, and shifts in physiology due to changing
resource availability (e.g. water, nutrients, temperature). Interestingly,

they found that mean ci ⁄ ca was constant over the 50 000-yr time
period and attributed it to higher stomatal conductance and
greater chloroplast demand for CO2 during the glacial period
when plants would likely have adjusted physiological responses to
increase carbon assimilation under low atmospheric [CO2]. As a
consequence of constant ci ⁄ ca, mean ci was much lower in glacial
trees (106 ppm) than in modern trees (168 ppm); in fact, mod-
ern trees rarely exhibited the low ci values routinely found in
glacial trees. Overall, this study provided direct evidence that gla-
cial plants were severely carbon limited over a very long time
period, until atmospheric [CO2] began rising during the glacial–
interglacial transition.

Perhaps one of the most important points raised by Gerhart
et al. was that inter-annual variation in ci ⁄ ca was low in glacial
trees relative to modern trees even though climate was generally
more variable during glacial periods. In modern trees, ci ⁄ ca is
highly variable and often dependent upon soil water availability
and vapour pressure deficit (Gerhart et al.). Given that ci was very
low (minimum of 90 ppm) in glacial trees and inter-annual vari-
ation in ci ⁄ ca was low even in a highly variable climate, this
would suggest that tree physiology during glacial periods was pre-
dominantly limited by low [CO2] and not other environmental
factors. Therefore, plants growing in very low [CO2] could not
utilize higher soil water availability or nutrients, thereby reducing
the impact of these variables on physiology or growth. In some
respects this is reassuring, in that the results of this field-study
over evolutionary time are similar to short-term, controlled
environment studies with modern plants grown in glacial [CO2]
showing significant carbon limitations on plant physiology even
when other resources were generally not limiting (Dippery et al.,
1995; Tissue et al., 1995). Overall, a major conclusion of
Gerhart et al. was that the environmental factors that regulate
photosynthesis, and indirectly plant growth, may vary across
geologic time.

Adaptation to low [CO2] and consequences for plant
responses to climate change

Low [CO2] has been proposed as a strong evolutionary selective
agent, including contributing to the origin of agriculture (Sage,
1995) and the evolution of C4 plants in association with high
temperature and drought (Osborne & Sack, 2012). More specifi-
cally, low [CO2] has generated substantial changes in leaf traits
associated with CO2 and water exchange, such as reduced stoma-
tal density, greater vein density and megaphyll leaves (see review
by Leakey & Lau, 2012). Given the duration of very low [CO2]
over geologic time and the relatively recent rise in [CO2] over the
past 20 000 yr, selection pressure must have been strongly
exerted by low [CO2]. For example, Ward et al. (2000) found
that biomass production in Arabidopsis was increased 35% after

Forum

4 New Phytologist (2012) 194: 4–6

www.newphytologist.com
� 2012 The Authors

New Phytologist � 2012 New Phytologist Trust



only five generations of selection in low [CO2], but not at high
[CO2], suggesting rapid and strong selective effects in low
[CO2]. It is therefore, reasonable to assume that plants are still
adapted to low [CO2], which may constrain responses to rising
[CO2] predicted to occur over the next century (Sage &
Coleman, 2001).

In a future warmer, high [CO2] world, the primary resource
limiting plant function will continue to transition from [CO2] to
other resources, such as temperature, nutrients and water avail-
ability. In controlled environment studies to date, there is little
evidence that adaptive evolutionary responses to elevated [CO2]
have occurred, even over many generations, despite changes in
plant phenotypes (Leakey & Lau, 2012). Longer term exposure
(thousands of years) to elevated [CO2] at natural CO2 springs
also generally find minimal adaptive change despite some altera-
tions in photosynthetic performance and biochemistry (e.g.
Cook et al., 1998). Interestingly, even the evolution of Rubisco
appears constrained, with Rubisco specificity optimal for light-
saturated photosynthesis at c. 200 ppm [CO2] (Zhu et al.,
2004), which is the mean [CO2] over the last 400 000 yr (Luthi
et al., 2008). A potential explanation for the general lack of
evidence for adaptive responses to elevated [CO2] is that few
studies have adequately addressed the interactive effects of ele-
vated [CO2] and abiotic stress (e.g. nutrient, water, temperature)
over multiple generations (Leakey & Lau, 2012). Given that
these environmental conditions co-vary, and that selection is
strongest under stressful conditions, this research direction
should be pursued in the near future.

Reduced terrestrial carbon storage, net primary production
and forest cover during glacial periods, which are characterized
by very low atmospheric [CO2], may be more accurately pre-
dicted when the impact of low [CO2] on physiological processes
is included in palaeoclimate models (Prentice & Harrison,
2009). Utilizing findings from studies that address the impact of
low [CO2] on physiological performance in C3 and C4 plants, it
has been demonstrated that physiological effects may scale up to
the ecosystem level (Prentice & Harrison, 2009). For example,
changes in [CO2] and their resultant effect on plant photosynthe-
sis and water use efficiency in low [CO2] have been used to
accurately explain changes in the composition of plant communi-
ties (C3 vs C4) over the LGM, as well as account for changes in
the woody component in savannas, relative forest cover, and most
recently tree–grass competition during the transition from LGM
to pre-industrial Holocene (Prentice et al., 2011). Overall, we
should utilize our improved understanding of plant adaptation
and response to low and variable [CO2] over historic time peri-
ods to better predict ecosystem response to rising [CO2] and
future climate change.

Future research directions

We suggest several directions for future research to better under-
stand how plant adaptation to low [CO2] may constrain future
responses to rising [CO2]. Although Gerhart et al. attributed a
constant mean ci ⁄ ca to both higher stomatal conductance and
greater chloroplast demand for [CO2] we still do not have direct

evidence of the relative control exerted by these factors.
Therefore, greater exploration of the relative roles of these two
factors in regulating ci ⁄ ca under low [CO2] is required to deter-
mine which traits were more likely to have exhibited adaptive
evolutionary responses to low [CO2]. Perhaps more importantly,
we are severely lacking multiple generation studies on plant
responses to low and elevated [CO2]. Accordingly, we are cur-
rently unable to develop significant conclusions regarding past
constraints imposed by low [CO2] on the relative rate of plant
adaptation to rising [CO2] and associated abiotic stresses.

While it has been well established that low [CO2] has signifi-
cantly affected leaf traits, development of different photosynthetic
pathways, and human societies through impacts on agriculture,
we do not know the relative role of [CO2] on plant performance
in the future. To date, studies suggest that as [CO2] rises from
glacial to future levels, the limitation imposed by [CO2] on
growth and physiology becomes secondary to other environmen-
tal factors, such as temperature and drought. For example, growth
of cottonwood was limited at glacial [CO2] despite nonlimiting
temperature, soil moisture and soil [P], but at high [CO2] the
limitation to growth was largely imposed by soil [P] (Lewis et al.,
2010). Given the importance of the interactive effects of other
environmental factors on plant response to [CO2], we suggest that
future research focus on multi-factor (e.g. low and elevated
[CO2], temperature, water, nutrients) experiments across differ-
ent plant functional groups, in an effort to ultimately determine
ecosystem response to future climate change.
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